Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Antiviral Res ; 214: 105605, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2293609

RESUMEN

This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.


Asunto(s)
COVID-19 , Neumonía , Humanos , Animales , Cricetinae , COVID-19/diagnóstico por imagen , SARS-CoV-2 , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Enzima Convertidora de Angiotensina 2 , Tomografía de Emisión de Positrones , Mesocricetus , Progresión de la Enfermedad
2.
Proc Natl Acad Sci U S A ; 117(27): 15902-15910, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: covidwho-611002

RESUMEN

Neurotropic strains of mouse hepatitis virus (MHV), a coronavirus, cause acute and chronic demyelinating encephalomyelitis with similarities to the human disease multiple sclerosis. Here, using a lineage-tracking system, we show that some cells, primarily oligodendrocytes (OLs) and oligodendrocyte precursor cells (OPCs), survive the acute MHV infection, are associated with regions of demyelination, and persist in the central nervous system (CNS) for at least 150 d. These surviving OLs express major histocompatibility complex (MHC) class I and other genes associated with an inflammatory response. Notably, the extent of inflammatory cell infiltration was variable, dependent on anatomic location within the CNS, and without obvious correlation with numbers of surviving cells. We detected more demyelination in regions with larger numbers of T cells and microglia/macrophages compared to those with fewer infiltrating cells. Conversely, in regions with less inflammation, these previously infected OLs more rapidly extended processes, consistent with normal myelinating function. Together, these results show that OLs are inducers as well as targets of the host immune response and demonstrate how a CNS infection, even after resolution, can induce prolonged inflammatory changes with CNS region-dependent impairment in remyelination.


Asunto(s)
Sistema Nervioso Central/inmunología , Infecciones por Coronavirus/complicaciones , Enfermedades Desmielinizantes/etiología , Oligodendroglía/inmunología , Animales , Infecciones por Coronavirus/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas Luminiscentes , Masculino , Ratones , Virus de la Hepatitis Murina , Oligodendroglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA